Skip to content
Snippets Groups Projects
Commit dd906ccf authored by thierry balliau's avatar thierry balliau
Browse files

correction d'un bug sur mcq.compute.protein.abundance en TOP3 qui fait la...

correction d'un bug sur mcq.compute.protein.abundance en TOP3 qui fait la somme des log au lieu de la siomme des aires
parent 0ac9e1c8
No related branches found
Tags MCQR_0.6.8
No related merge requests found
......@@ -2,7 +2,7 @@ Package: MCQR
Type: Package
Title: a R Package for Analysis of Mass-Spectrometry-Based Proteomics Data
Version: 0.6.7
Date: 2022-11-29
Date: 2022-12-02
Authors@R: c(person("Balliau", "Thierry", email="thierry.balliau@inrae.fr", role=c("aut", "cre")),
person("Blein-Nicolas", "Mélisande", email="melisande.blein-nicolas@inrae.fr", role=c("aut")),
person("Langella", "Olivier", email="olivier.langella@universite-paris-sud.fr", role=c("aut")),
......
......@@ -109,18 +109,22 @@ mcq.compute.protein.abundance = function (object, method="sum") {
# controle nb pep
if(length(unique(mean_pep$ncount)) != 1){
warning(cat("missing values for some peptide for Protein ", unique(tab$protein)))
}
mean_pep <- setorderv(mean_pep, "mean_int", order=-1, na.last=TRUE)
mean_pep <- head(mean_pep, topN)
mean_pep$ncount = length(unique(mean_pep$peptiz))
return(mean_pep)
return(NULL)
}else{
mean_pep <- setorderv(mean_pep, "mean_int", order=-1, na.last=TRUE)
mean_pep <- head(mean_pep, topN)
mean_pep$ncount = length(unique(mean_pep$peptiz))
return(mean_pep)
}
}
list_tab_pep <- lapply(list_tab_pep, select_topN, topN)
select_peptiz = rbindlist(list_tab_pep)
tab = tab[tab$peptiz %in% select_peptiz$peptiz,]
tab$q <- 10^tab$q
tprot <- as.data.frame(tab[, list(q =sum(q)), by=c("accession", "msrun")])
tprot$q <- log10(tprot$q)
}
#Add nb of peptides used to compute the abundance of a protein in a msrun
......
# Lanceur version 0.6.7
# Lanceur version 0.6.8
#-------------------------------------------------------------------------------------------------------------------------------------------------------------------
......
# Lanceur version 0.6.7
# Lanceur version 0.6.8
### lanceur reference phoshpo label fraction
......
# Lanceur version 0.6.7
# Lanceur version 0.6.8
#-------------------------------------------------------------------------------------------------------------------------------------------------------------------
......
......@@ -10,10 +10,10 @@
\arguments{
\item{object}{an object of class 'cmcq.pepq.masschroq' or 'cmcq.pepq.by.track'.}
\item{method}{a character string indicating the method to aggregate peptide intensity values into protein abundance. Must be "model", "sum" or "mean".}
\item{method}{a character string indicating the method to aggregate peptide intensity values into protein abundance. Must be "model", "sum", "mean" or "TopN" with N between 1 to 5.}
}
\details{If method="sum" or method="model", protein abundances are computed as the sum or the mean of non log-transformed peptide intensity values. The protein abundance values thus obtained are log-transformed for subsequent statistical analysis. If method="model", protein abundances are computed as adjusted means from a linear mixed model derived from Blein-Nicolas et al. (2012) taking into account a peptide effect as fixed effect and a sample effect as random effect. In that case, only proteins represented by a minimum of 2 peptide-mz can be considered (those represented by a single peptide-mz are removed from the dataset.}
\details{If method="sum" or method="model", protein abundances are computed as the sum or the mean of non log-transformed peptide intensity values. The protein abundance values thus obtained are log-transformed for subsequent statistical analysis. If method="model", protein abundances are computed as adjusted means from a linear mixed model derived from Blein-Nicolas et al. (2012) taking into account a peptide effect as fixed effect and a sample effect as random effect. In that case, only proteins represented by a minimum of 2 peptide-mz can be considered (those represented by a single peptide-mz are removed from the dataset).For TopN method, the N Most intense peptide in average for the experiment are selected, then summed to obtain protein values. if there are no more than N peptides in the dataset then all peptides are retained for the calculation.}
\value{'mcq.compute.protein.abundance' returns an object of class 'cmcq.protq.xic'.}
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment